行业动态
随着社会的发展和人们对生活健康的关注,加上水资源的日益短缺和恶化,水质监测系统的运用备受关注。随着水质监测技术的逐步完善和成熟,水质监测技术已经成为环保管理部门对辖区水体水质、水体状况进行实时监测的主要手段。
根据当地建设环境,我公司提供固定式微型水质自动监测站系统建设方案(以下简称微型水质监测站或监测站)。该微型水质监测站由分析单元、采水单元、配水单元、预处理单元、控制单元、数据采集/处理/传输单元、辅助单元、综合防雷单元等系统单元组成。其中分析单元由:pH、温度、浊度、电导率、溶解氧、高锰酸盐指数水质在线分析仪、总磷水质在线分析仪、总氮水质在线分析仪、氨氮水质在线分析仪、COD水质在线分析仪。为评估水环境质量提供在线数据支撑;
各单元任务分配:采水单元负责从监测点采集水样输送到配水单元,配水单元根据各仪器的对于分析水样的水质、水压和水量的不同要求,将水样分配到各个分析单元预处理;预处理单元根据地表水环境质量标准和结合各监测因子仪表对于水样的不同要求,对监测因子的水样采取不同的预处理处理方案;控制与数据采集/处理/传输单元实现对系统的控制、数据采集/传输等功能;辅助单元为整个系统的稳定运行、防止雷击,为试剂冷藏提供保障;站房具有防撞击、防震动、防漏水、防烟雾、防腐蚀等功能,为整个系统的正常运行和运维人员的安全舒适的维护提供了保障。
固定式微型水质自动监测站架构如图Ⅰ所示。分布于各测点的监测站全自动运行,对现场水质进行实时监测并记录水质的变化,通过专用的通讯系统,将监测数据上传至远程的监控
水质水位自动监测系统以水质水位自动监测站、通讯网络和监控中心组成,其中,水位和水质站在选址和建站时,一般集成在一起。其拓扑结构如图所示:系统通讯网络拓扑结构图
、脉冲、开关、数字量信号连接和数据传输。现场数据采集传输采用现场总线、开放的通讯协议和标准数据传输格式,通过基于RS485网络的Modbus/RTU或PLC标准通讯协议采集水质在线分析仪和智能传感器的数据。现场水质水位监测站与监控中心的远程通讯采用省级监控中心平台统一指定的通讯协议,实现双向传输。三、系统特点3.1 系统集成技术特点
2)方法成熟(国标法)、性能稳定、布局合理、运行费用低、维护工作量小,尽量选择没有污染物(测量废液)排放的在线)仪器设备及系统抗电磁干扰、避雷装置及电力稳定供应的配套设计;
4)仪器测量废液属于危险废物的按规范集中收集储存并委托有资质的单位按国家相关规定处置,避免对环境产生二次污染。(*如需我司负责测量废液处置则需额外支付相关费用);
7)自动化程度高,做到自动采样、外围采水管路和预处理自动反吹和清洗、仪表自动分析和自动清洗以及数据记录和输出等环节的可靠有效;
8)水质自动监测装置采用一体式安装方式,布局合理,整齐美观,尽量缩短现场安装调试的工作量和实施时间;
1)采水系统:可调节式取(连续或间歇)水液位高度:判断取水是否符合地表水正常运行的取水条件(可选);
5)远程监控:能在不增加任何投入的前提下,通过PC(Web)、移动端(APP)实时查阅水站数据;
智能型pH传感器(型号:AMT/PH-400)是一款采用RS485通讯接口和标准Modbus协议的智能传感器。耐腐蚀性壳体,内置PT1000温度传感器及补偿
pH定义为介质中氢离子活度的负对数值,用于衡量介质酸碱程度。氢离子(H+)选择性渗透通过外层膜,产生电化学电位,即电化学分界层的电位。生成的电化学电位取决于介质的pH值。电极内置Ag/AgCl作为参比电极,其电位稳定,不受介质酸碱度影响。变送器基于能斯特方程(Nernst) 将测量电压转换成相应的pH值。(原理图)
智能型浊度传感器(型号:AMT/ZD-400)是一款采用RS485通讯接口和标准Modbus协议的智能传感器,使用波长860nm的作光源,不受水样色度影响,采用90°散射方法,符合ISO 7027国际标准和USEPA 180.1美国环保标准。
智能型电导率传感器(型号:AMT/DDL400)是一款采用RS485通讯接口和标准Modbus协议的智能传感器。提供适用于低、中、高量程电导率的测量,电极常数从0.1到250px-1,电极材料有石墨、铂金、不锈钢,可测量电导、TDS、盐度。耐腐蚀性壳体,内置PT1000温度传感器及补偿算法,适用于各种恶劣工作环境。
广泛应用于地表水监测、工业废水和市政污水监测、水处理行业、锅炉回流水监测、去离子过程监测、反渗透监测、海水、盐水、养殖水监测等。
智能型溶解氧传感器(型号:AMT/DO-400)采用RS485通讯接口和标准Modbus协议的智能传感器。无需更换溶氧膜和电解液,极化时间短,响应时间快,测量几乎不受污垢和流速影响。耐腐蚀性壳体,内置PT1000温度传感器及补偿算法。
溶解氧电极使用465nm光源作为激发光,照射敏感膜片产生620nm荧光。在水中溶解氧的作用下发生荧光猝灭效应,猝灭程度与溶解氧浓度成线性关系。(原理图)
应用广泛应用于地表水监测、工业废水和市政污水监测、废水处理、水产养殖、生物技术、药物开发、食品饮料、化学制造等行业。
总磷水质在线分析仪基于国家标准 GB11893-89 的分析方法,待测水样经过硫酸钾氧化消解后,将其中含磷化合物转变为正磷酸盐,在酸性介质和锑盐存在的条件下,正磷酸盐与钼酸铵反应,生成磷钼杂多酸,然后立即被抗坏血酸还原,生成蓝色络合物。通过光电比色原理检测吸光度,通过计算得到水样中总磷的浓度。
总氮水质在线分析仪基于国家标准 HJ 636-2012 的分析方法,水样经过碱性硫酸钾氧化消解后,将其中含氮化合物转变为硝酸盐。通过紫外分光光度法原理检测吸光度,通过计算得到水样中总氮的浓度。
氨氮水质在线分析仪基于国家标准《HJ 536-2009 水质氨氮的测定 水杨酸分光光度法》,其测定原理:在碱性介质和亚硝基铁氰化钠存在下,样品中的氨、铵离子与水杨酸盐和次氯酸离子反应生成蓝色化合物,该物质在特定波长下有吸收,通过光电比色原理检测吸光度,通过计算得到水样中氨氮的浓度。
COD水质在线分析仪仪器采用国标《水质化学需氧量的测量重铬酸盐法》,其测定原理:待测水样经过预处理,在强酸介质下以银盐作为催化剂,在高温
消解条件下还原性物质被重铬酸钾氧化,通过光电比色原理检测吸光度,通过计算得到水样中化学需氧量的质量浓度。
高锰酸盐指数水质在线分析仪采用国标 GB 11892-89《水质 高锰酸盐指数的测定》,其测定原理:水样中加入已知量的硫酸和过量的高锰酸钾,高温下将样品中的某些有机物和无机还原性物质氧化,通过光电比色原理检测吸光度,通过计算得到水样中高锰酸盐指数。
水质在线自动监测系统中心监控平台具有:水质预警、远程控制、数据采集,数据分析、数据管理、通过监控台可对整个水质监测网络进行控制,设置浮标的工作模式,监控浮标系统运行情况,数据可以按日、周、月、季、年进行整理,还能得到同一时段不同位置的数据,可以根据水流方向分析数据结果,根据时间不一样,可以生成曲线,对数据进行结果分析和趋势分析。
监控平台综合分析收到的水质参数数据,并与定制的水质标准进行判断,当监测数据异常时,系统软件可以及时做出判 断,并发出水质污染报警,提供声音,
通常采样点到仪器的距离在20米内时,选用350W的潜水泵/自吸泵。当采样点到仪器的距离大于20米时,应选用500-750W的潜水泵/自吸泵,另还应根据水样的腐蚀性选择是否选用耐腐蚀泵。
取水点至仪器安装处应预先安装好水泵、穿线管、水样进水管、出水管和溢流管。连接的管道应根据具体情况选用硬聚氯乙烯塑料、ABS工程塑料或钢(在水质具酸碱性的地方不能用金属管材)、不绣钢等材质的硬质管材。为了方便与仪器设备连接,建议管道最好采用硬质PVC给水管。
① 放置仪器的地面应高于水槽壁,管道从仪器到水槽呈坡型下降,尽量减少管道弯头的数量,并且管道中途不应有凸起或凹下的地方,避免管道中存水,以利于进水管道的排空和冬季防冻。
② 管道的安装过程要十分仔细,安装好的管道内要干净,没有直径大于2mm的杂物,以免损坏污水泵或堵塞管道。管道口在仪器安装前应用干净的东西堵好,以免杂物进入。
③ 潜水泵安置的位置其水流应为层流态,所抽吸的水体应不呈气溶胶状(即水中含有大量气泡)。气溶胶进入仪器将使测量结果不准或使仪器报警。
仪器各部件功能测试:进入动作测试菜单,测试各个器件工作是否正常、调整相应部件工作状况以及及时申请有问题的配件等;
标样测定:测定准备好的标样数次,测试仪器的重复性和准确性,看测量结果是否在允许误差范围内,如误差过大,则重新标定仪器或调整相关参数,使测试结果误差在允许范围内;
水样测试:标样测试合格后,进行实际水样的测试,有条件的地方与实验室进行比对,最后将仪器切换到自动状态;
客户培训:就仪器的操作和日常管理与维护以及简单的故障、错误信息处理对客户进行培训,有关的安全知识培训;
1)传感器外表面:用自来水清洗传感器的外表面,如果仍有碎屑残留,用湿润的软布进行擦拭,对于一些顽固的污垢,可以在自来水中加入一些家用洗涤液来清洗。
2)检查传感器的线缆:正常工作时线缆不应绷紧,否则容易使线缆内部电线断裂,引起传感器不能正常工作。
每一个月应对如下项目进行维护:*注:仪器工作所用试剂有危险组分,操作时需穿戴指定工作服和佩戴手套。
针对于水域冬季可能会存在冰封期,所以在冰封期应停止工作,并进行对应的维护与保养规范进行存放!
欧洲杯手机买球软件